
Formal Methods in
Practice: the Missing Link.

A Perspective from the
Security Area

D. Bolignano, D. Le Métayer,
C. Loiseaux

Trusted Logic, France
www.trusted-logic.fr

2

The bright side:
potential benefits of formal methods

8 Development methodology
• Modelisation
• Early bug detection

8 Software validation
• Consistency checking
• Verification of properties
• Testing

8 Communication
• Clarity (no ambiguity)
• Completeness
• Document generation

3

The dark side:
the obstacle race of

the determined formalist

8 What help can I expect for

8 building on existing documentation?
8 understanding what to specify and how?
8 specifying and proving in the large?
8 dealing with systems rather than individual components?
8 using appropriate tools to process the spec?
8 explaining and justifying specs and proofs?
8 integrating the formalisation into a traditional development

environment?
8 assessing the benefits of the formalisation?

4

Evaluation Assurance Levels

8 Each level provides an internally consistent
general purpose assurance package

8 Assurance components are levelled on the basis
of the degree of formality and degree of detail

EAL1: functionally tested
EAL2: structurally tested
EAL3: methodically tested and checked
EAL4: methodically designed, tested and reviewed
EAL5: semiformally designed and tested
EAL6: semiformally verified design and tested
EAL7: formally verified design and tested

5

Environment

Security objectives

Functional Requirements / TSP

TOE Summary Specification

 Functional SPecification

 High-Level Design

Low-Level Design

IMPlementation Representation

TSP Model

Environment

Security objectives

Functional Requirements / TSP

TOE Summary Specification

 Functional SPecification

 High-Level Design

Low-Level Design

IMPlementation Representation

EAL5 EAL7

6

 Building on existing documentation

8 Two observations concerning the CC:
• Higher level certifications don’t start from scratch:

informal and/or semi-formal documents are available
• Difficult to build on existing certification documents to

prepare certifications at higher levels
• Even higher level certifications do not require only formal

documents
8 Formal methods never live in a vacuum:

• Requirements are informal
• The ultimate goal is to convince (clients, certification

bodies, etc.)
8 Formal, semi-formal and informal methods:

integration rather than opposition
• The key issue is rigour, not formality

7

Establishing links between informal,
semi-formal and formal methods

8 Current work in the context of UML
• Semantics of UML diagrams
• Enhancing consistency checkings
• Integration of formal and informal notations (UML-Z)

8 The TL-FIT environment
• Smooth integration of informal, semi-formal and formal

documents through an appropriate modelisation discipline
• Automatic consistency checkings (internal, refinement,

traceability)
• Automatic generation of documents for CC certifications
• Capitalisation of efforts

8

 What to specify and how

8 Different options for modelisation
• Focus on security relevant issues
• Choose an appropriate level of abstraction
• Provide a rationale for these choices

8 Different specification languages
• General purpose languages lead to decidability problems

and require heavy user assistance
• Domain specific specification languages for automatic

verification (ex: cryptographic protocol verification)?

8 Different interpretations of the CC
• The added value of formal methods is manifest only if

they tackle the most complex issues

9

 Example: the Java Card VM (I)

8 Excerpts from Sun documentation:

• “There is no way to forge pointers to enable malicious
programs to snoop around inside memory.”

• “The Java Card firewall provides protection against the
most frequently anticipated security concern: developer
mistakes and design oversights that might allow sensitive
data to be leaked to another applet”.

• “The firewall also provides protection against incorrect
code. If incorrect code is loaded onto a card, the firewall
still protects objects from being accessed by this code”.

10

 Example: the Java Card VM (II)

8 Modelisation and CC:
• What are the key security properties (Req)?
• How should they be designed to map the CC components

(SPM, FSP, HLD, etc.)?
• Should they be expressed as access control policies,

information flow policies, combinations of those, etc.?
• What are the key components (type checker, linker,

firewall, interpreter, etc.)?
• How do these components cooperate to achieve the key

security properties?
• Is it possible to prove that “incorrect” applets are really

harmless for other applets on the card?

11

 Example: the Java Card VM (III)

8 One possible option:
• Security policy model (SPM):

• Collection of dedicated abstract machines with the
associated invariant properties

• Consistency checking of the abstract machines
• Global properties based on the collection of invariants

• Functional specification (FSP):
• External behaviour of the key components

• Correspondence between SPM and FSP:
• Link between the SPM and the key components

• High level design (HLD):
• Collection of high level descriptions of the key components

• Correspondence between FSP and HLD:
• Correctness of the design of the key components

12

 Further research topics on modelisation

8 How to reason about:
• Denial of service
• Authentication
• Key management
• Risk analysis (attack trees?)
• Native methods
etc.

8 Domain specific languages for specifying
security policies (subjects, objects, roles, life
cycles, etc.)?

13

 Specifying and proving in the large

8 Lack of a methodology to design and
manage large proofs.
• Large proofs take a long time to design and to debug
• Little use for communication
• Difficult to maintain and reuse

8 Mechanised formal methods are pieces of
software themselves
• Inspiration should be taken from the software

engineering area: proof architecture, proof debugging,
proof reusability, object-oriented proof techniques, etc.?

• Evolution should be considered from the start: varying
assumptions

14

 Dealing with systems rather than
components

8 Current trend: open systems
8 Specific needs for certifying systems rather

than complete products:
• Independent validation of the architecture and the

individual components
• Conditions on the components to ensure that they can be

integrated within the architecture
• Different security requirements on components
• Composition of security polocies

8 Compositionality issues in formal methods:
• Software architectures
• Compositional verification techniques

15

 Using appropriate tools (I)

8 Variety of tools:
• Proof assistants
• Model checkers
• Static analysers
• Type checkers
• Constraint solvers

8 No panacea:
• Variety in expressive power
• Variety in the degree of mechanisation

8 Need for cooperation between tools:
• Foundation level
• Strategy level
• Interface level

16

 Using appropriate tools (II)

8 Domain specific rather than general purpose
verification environments?
• Suitable expressive power
• High level of mechanisation
• Capture the expertise of a given domain

8 Illustration: verification of cryptographic protocols
• Step 1: modelisation of the protocol (with explicit assumptions

on the environment) in a domain specific language
• Step 2: abstraction of the initial system (based on trust

assumptions on the actors of the protocol)
• Step3: model checking of the abstract system
Key issues:
• Integrated formal model
• Varying assumptions

17

 Explaining and justifying specs and proofs

8 The ultimate goal is to convince (users, partners,
certification bodies, etc.)

8 Variety of languages and verification tools: is it
possible to convey the essence of a spec or a proof
to a non-expert?

8 Is it really necessary to get into the intricacies of a
specific tool to grasp the essence of a proof?

8 Is the project of a “neutral” proof style just an
impossible dream?

18

 Integration of formal methods in a
traditional development environment

8 For a long time formal methods have been designed with the
(wrong) assumption that they should supersede traditional
methods

8 “Seven myths of formal methods” [Hall, IEEE Software
1990]:
• “Formal methods can guarantee perfect software and eliminate

the need for testing”
• “Formal methods are all about proving programs correct”,
• …

8 Formal methods should be designed to improve traditional
methods rather than to replace them
• Evolutionary process
• Build on existing expertise
• Improve the cost/benefit ratio of formal methods

19

Illustration: test suite generation

8 TL-CAT: automatic test suite generation
• Relieves the tester from the burden of choosing specific test

data
• Builds not only test cases but also test suites
• Link with APDU-Script to automatically send the scripts to the

card or to a card simulator

8 Two parameters: specification and test strategy
• Simple specification language well suited to card applications
• Strategies expressed in terms of data domain coverage and

control path coverage

8 Benefits of using TL-CAT
• Reduce testing costs
• Improve the quality of the process (explicit test strategies)
• Help in the production of the CC test assurance component

20

Assess the benefits of the formalisation

8 Formalisation is always partial: need to justify choices and
assumptions about the parts which are not formalised (eg.
SPM in the CC).

8 The CC also require justifications for the methods and tools
that have been used.

8 The ultimate goal is to increase the level of confidence: is it
possible to quantify this improvement?

8 Can inspiration be taken from the semi-formal development
methods? A modest approach to formal methods: check
consistency constraints between a variety of representations
(or views) produced by different actors.

8 “Social processes and proofs of theorems and programs” [R.
De Millo, CACM 1979] .

21

Conclusion

8 The real challenge today is to improve the
formalisation infrastructure rather than to
design more powerful proof techniques
• Integration with semi-formal methods
• Methodology for modelisation in the context of the CC
• Methodology for proving in the large
• Better communication with non-experts
• Better integration between tools and guidelines to use

them in an appropriate way
• Domain specific environments

8 These problems are not only engineering
issues, they are true research challenges

22

Assumptions

TOE physical
environement

CC requirements
catalogue

Functional
requirements

TOE
purpose

Organisational
security policies

Requirements for the
environement

Assets requiring
protection

Threats

Security objectives

Assurance
requirements

TOE summary
specification

Establish security
environement

Establish TOE
summary

specification

Establish security
objectives

Establish security
requirements

Security
objectives
material (PP/ST)

Security
requirements
material (PP/ST)

Security
specification
material (ST)

Security
environement
material (PP/ST)

23

Formal Methods in
Common Criteria

EAL7

EAL5

EAL1

EAL4

Formally verified design

Semi-formal designed

Functionally tested

Methodically designed

EAL5 EAL6 EAL7
Configuration
management
Delivery and
operation

ADV_FSP SF SF SF
ADV_HLD SF SF F
ADV_IMP I I I
ADV_INT I I I
ADV_LLD I SF SF
ADV_RCR SF SF F
ADV_SPM F F F

Guidance
document
Life cycle
support
Tests
Vulnerability
assesment

Evaluation
assurance level

Developpement

Assurance
Class

Assurance
Family

EAL6 Semi-formal verified design

