
© Telelogic 2000

UML, SDL & UML 2.0

Real-Time UML Powered by SDL

- Software engineering challenges
- Language support: UML & SDL

- UML2

Anders Ek (anders.ek@telelogic.com)

© Telelogic 2000

UML, SDL & UML 2.0

Application Domain Characteristics

• Soft real-time systems
– Reactive, event driven systems
– Asynchronous communication
– High degree of concurrency
– Distributed

• Application areas
– Telecom
– Aerospace
– Automotive

© Telelogic 2000

UML, SDL & UML 2.0

• Managing software complexity
– Viewpoints
– Run-time architecture

• Managing project complexity
– Work structuring
– Contracts

• Enabling quality and productivity
– Visual software development

Challenges

“Time to market”

“Life-cycle cost”

“Quality”

“Productivity”

© Telelogic 2000

UML, SDL & UML 2.0

Languages

• Visual software
development
– UML
– SDL

• SDL-2000 &
Z.109

• UML 2.0 UML

SDL

1977

1984

1988

1992

1996

2000 2000
1997

UML2

© Telelogic 2000

UML, SDL & UML 2.0

UML 2.0

Notation

UML 2

Behavior

Structure

Components
Run-time architectures
Relationships

State machines
Activity diagrams
Interactions

• UML 2.0 RFIs
– Dec 99

• UML 2.0 RFPs:
– UML 2.0 Infrastructure
– UML 2.0 Superstructure
– UML 2.0 OCL
– (UML 2.0 Interchange)

• Submissions
– initial: August 2001
– revised: February 2002

© Telelogic 2000

UML, SDL & UML 2.0

Massive Support for UML 2.0
LOI List:

Company Date Notes
ARTISAN Software Tools October 16, 2000
Alcatel November 9, 2000
DSTC October 24, 2000
Data Access September 21, 2000
Ericsson November 9, 2000
Fujitsu November 9, 2000
Hewlett-Packard November 1, 2000
IONA November 9, 2000
International Business Machines November 6, 2000
Jaczone AB November 10, 2000
Kabira Technologies, Inc. October 16, 2000
MEGA International November 10, 2000
Mercury Computer Systems October 19, 2000
Motorola November 6, 2000
Rational Software November 1, 2000
Siemens AG November 6, 2000
Sight Code, Inc. November 1, 2000
Softeam October 12, 2000
Telelogic AB November 1, 2000

© Telelogic 2000

UML, SDL & UML 2.0

Challenges

•• Managing software complexityManaging software complexity
– Viewpoints
– Run-time Architecture

• Managing project complexity
– Work structuring
– Contracts

• Enabling quality and productivity
– Visual software development

© Telelogic 2000

UML, SDL & UML 2.0

Static Structure

• Class diagrams
– Classes

• attributes
• operations

– Associations
• aggregate
• composite

– Inheritance

© Telelogic 2000

UML, SDL & UML 2.0

Use Cases

• Describe how external
actors interact with the
system
– focus on functionality

• Communicate the
primary functionality of
the system to non-
technicians

• Act as roadmaps for
system usage scenarios
– Close relationship to

sequence diagrams

Customer

Salesperson
Place Order

Assistant

Fill Order

© Telelogic 2000

UML, SDL & UML 2.0

Sequence Diagrams

• Interactions between
instances
– communication

• asynchronous
• synchronous

– life-cycle
• creation
• termination

– intuitive
• work well with use

cases

• Requirements
• Testing

A:SUBSCR :EXCHANGE B:SUBSCR

OFF_HOOK

READY_TONE

DIGITS
CALL_TONE

OFF_HOOK

ON_HOOK
ON_HOOK

CALL_TONE

© Telelogic 2000

UML, SDL & UML 2.0

Implementation Views

• Focus on application
creation
– code generation
– compilation
– “make”

• Configuration
– target language
– scheduling

• Deployment
– distribution
– message transport

© Telelogic 2000

UML, SDL & UML 2.0

Challenges

•• Managing software complexityManaging software complexity
– Viewpoints
– Run-time Architecture

• Managing project complexity
– Work structuring
– Contracts

• Enabling quality and productivity
– Visual software development

© Telelogic 2000

UML, SDL & UML 2.0

System inres 1(2)

Station_Ini

Medium

ISAP1

 ICONconf, IDISind

 ICONreq, IDATreq, IDISreq

MSAP1

 MDATreq

 MDATind

MSAP2

MDATind

MDATreq

Run-time Architecture

Block Station_Ini 1(1)

Initiator (1, 1)

Coder_Ini (1, 1)

ISAP1

MSAP1

ISAP

ICONconf,
IDISind

ICONreq,
IDATreq,
IDISreq

IPDU
CR,
DT,
DR

CC,
DR,
AK

MSAP
MDATreq

MDATind

Block Medium 1(1)

MSAP_Manager1
(1, 1)

MSAP_Manager2
(1, 1)MSAP1

MSAPr11

 MDATreq

MSAPr21

MDATind

MSAP2MSAPr22
MDATreq

MSAPr12
 MDATind

•Divide and conquer
•Architecture diagrams

© Telelogic 2000

UML, SDL & UML 2.0

Run-time Architectures (1)

“Proposals shall support the modeling of
the internal structure of a classifier in terms
of its hierarchical decomposition. The internal
structure shall be allowed to contain instances
of classifiers and links between these instances,
without affecting the usage of these classifiers
elsewhere. The connections between instances
shall, at a minimum, specify possible
communication.”

“Proposals shall support the modeling of
the internal structure of a classifier in terms
of its hierarchical decomposition. The internal
structure shall be allowed to contain instances
of classifiers and links between these instances,
without affecting the usage of these classifiers
elsewhere. The connections between instances
shall, at a minimum, specify possible
communication.”

© Telelogic 2000

UML, SDL & UML 2.0

The Agent

• Agent is the fundamental modeling construct
in SDL-2000
– Hierarchical decomposition
– Active object

• It can be considered a logical component
– provides encapsulation

• a “black box”
• has interfaces

– has internal structure
– has behavior

• through state machines

MyAgent

<<block>>
MyAgent

© Telelogic 2000

UML, SDL & UML 2.0

Encapsulation

• An agent has bi-
directional gates that
describe its
– implemented interfaces

• services that are
realized by the agent

– required interfaces
• services that others

must implement

• The interfaces are used
to specify contracts
between agents

Terminal

Customer

g1

g2

Display

[Display]

[Connect, SMS]

Control

[Control]

© Telelogic 2000

UML, SDL & UML 2.0

Interconnected Agents

• Agents are structured
hierarchically
– composition relation

• The internal structure of
an agent describes how
the contained agents
interact

• Channels: Connection
paths between agents
– context dependent

‘associations’

Input:Device

Logic:Control

Terminal

User

Display

Data

Command Log

Verify

[Log,Verify]

Bank

© Telelogic 2000

UML, SDL & UML 2.0

Explicit and Implicit Channels

• Only agents with
matching required and
implemented interfaces
may be connected
– explicitly

• channels are explicitly
drawn between agents

– implicitly
• channels are not shown
• the connections are

derived through
interface matching

B:BTB:BT

ba b

a

b

A

C:CT D:DT

© Telelogic 2000

UML, SDL & UML 2.0

Run-time architectures (2)

“Proposals shall support the specification of
the dynamic behavior of the internal structure
of a classifier, including its connection to the
state machine of the classifier, if any, its
initial instantiation, as well as the dynamic
addition and removal of parts and
connections to/from the internal structure.”

“Proposals shall support the specification of
the dynamic behavior of the internal structure
of a classifier, including its connection to the
state machine of the classifier, if any, its
initial instantiation, as well as the dynamic
addition and removal of parts and
connections to/from the internal structure.”

© Telelogic 2000

UML, SDL & UML 2.0

Dynamic Aspects of an Agent

• The internal structure of
an agent also describe
dynamic aspects of the
agent
– agent initialization
– multiplicity requirements
– state machine interaction
– agent creation
– life-cycle dependencies

Terminal

Basic (0,):
Call

Terminal

Setup

In

Initiate

Service (1,1):
Library

Out

Trigger

Control

© Telelogic 2000

UML, SDL & UML 2.0

Agent Characterization

• We distinguish between
different kinds of
agents:
– block

• execute concurrently
• distributed systems

– process
• execute alternatingly
• shared memory

– system (a top-level block)

Agent

Block

Process

System

© Telelogic 2000

UML, SDL & UML 2.0

Run-time Architecture

• UML 2 RFP asks for run-time architecture
• Hierarchical decomposition of structure
• Agent is the run-time architecture construct in

SDL
– provides encapsulation

• a “black box” with required/implemented interfaces
– has internal structure

• subagents & channels
– has behavior

• through state machines

Agent

<<block>>
MyAgent

© Telelogic 2000

UML, SDL & UML 2.0

Challenges

• Managing software complexity
– Viewpoints
– Run-time Architecture

•• Managing project complexityManaging project complexity
– Work structuring
– Contracts

• Enabling quality and productivity
– Visual software development

© Telelogic 2000

UML, SDL & UML 2.0

Extension

Foundation

package P

<<block>>
Subscriber

<<block>>
ISDNUser

Packages

• Packages are used to
organize a system into
manageable and
reusable work units
– Name scopes
– Usage dependencies

• Purpose is to allow
team work.

© Telelogic 2000

UML, SDL & UML 2.0

Packages, Systems and Agents

BT1
i1

i2

BT2
i4

system s1

use Pk1; use Pk2;

B : BT1

 i2

i2

i1

 i2
C: BTX

i1

package Pk1

Package Pk2

use Pk1; use Pk2;

B : BT1

 i2

i1

 i2
C: BTX

i1

system s2

D:BT2
i4

i2

i4

i2

• Packages as libraries of
reusable agents

• Systems are applications
that instantiate agents

© Telelogic 2000

UML, SDL & UML 2.0

Frameworks & Specialization

• Specialization of
architecture is the
foundation of framework
design

<<block>>
BT1

i1

i2

<<block>>
BT2

i2

i1

package Pk1

B1

 i3

i1

 i3 i2
C: BTX

i1

block type BT1

virtual
BTX

i3

i2 i2

i1

block type BT2 inherits BT1

redefined
BTX

i3

i2 i2

© Telelogic 2000

UML, SDL & UML 2.0

Challenges

• Managing software complexity
– Run-time Architecture
– Viewpoints

•• Managing project complexityManaging project complexity
– Work structuring
– Contracts

• Enabling quality and productivity
– Visual software development

© Telelogic 2000

UML, SDL & UML 2.0

Static Interfaces

• An interface defines
– attributes
– operations
– signals

• An agent has bi-
directional gates that
describe its
– implemented interfaces
– required interfaces

• The interfaces are used
to specify contracts
between agents &
teams

Terminal_
handler

g1

Display

[Connect, SMS]

[Control]

«interface»
Display

ShowS(Charstring)
signal ShowA(charstring)

ready Boolean

© Telelogic 2000

UML, SDL & UML 2.0

Dynamic Interfaces
• Sequence diagrams /

Message Sequence
Charts

• Well-known, intuitive
• Formal trace

semantics
• Requirements

handling?
– Scalability
– Hierarchy

A:SUBSCR :EXCHANGE B:SUBSCR

OFF_HOOK

READY_TONE

DIGITS
CALL_TONE

OFF_HOOK

ON_HOOK ON_HOOK

DISCONNECTED

DISCONNECTED

CALL_TONE

CONNECTED

© Telelogic 2000

UML, SDL & UML 2.0

Interactions (1)

“Proposals shall define mechanisms to
describe the decomposition of a role in an
interaction into an interaction of its
constituent parts.”

“Proposals shall define mechanisms to
describe the decomposition of a role in an
interaction into an interaction of its
constituent parts.”

© Telelogic 2000

UML, SDL & UML 2.0

Decomposition of MSCs

A:SUBSCR :NETWORK B:SUBSCR

OFF_HOOK

READY_TONE

DIGITS
CALL_TONE

OFF_HOOK

ON_HOOK ON_HOOK

DISCONNECTED

DISCONNECTED

MSC CONNECTION
DECOMPOSED

a:LINE_IFC

MSC NETWORK::CONNECTION

:SWITCH b:LINE_IFC

DISCONNECTED

OFF_HOOK

C_REQ

READY_TONE

DIGITS

C_IND

OFF_HOOK

CALL_TONE

CONNECTED

CALL_TONE

CONNECTED

CALL_TONE

C_RESP
C_CONF

CONN_IND

CALL_TONE

© Telelogic 2000

UML, SDL & UML 2.0

Interactions (2)

“The current sequence diagram notation
offers little help to structure
specifications using sequence diagrams
…

•Modelers have limited ability to define
variability within a single sequence
diagram.”

“The current sequence diagram notation
offers little help to structure
specifications using sequence diagrams
…

•Modelers have limited ability to define
variability within a single sequence
diagram.”

© Telelogic 2000

UML, SDL & UML 2.0

Inline Expressions

Compact notation
for handling of
minor variations
– alternatives
– optional parts
– repetitions
– exceptions

A_SUBSCR EXCHANGE B_SUBSCR

OFF_HOOK

READY_TONE

DIGITS
CALL_TONE

OFF_HOOK

DISCONNECTED

CALL_TONE

ADV_MSG ADV_MSG

OPT

when FREE_CALL

© Telelogic 2000

UML, SDL & UML 2.0

Interactions (3)

“The current sequence diagram notation
offers little help to structure
specifications using sequence diagrams
…

•Modelers cannot reference one
sequence diagram from another.”

“The current sequence diagram notation
offers little help to structure
specifications using sequence diagrams
…

•Modelers cannot reference one
sequence diagram from another.”

© Telelogic 2000

UML, SDL & UML 2.0

Sequence Diagrams & Reuse:
MSC References

reference

referenced MSC

© Telelogic 2000

UML, SDL & UML 2.0

Interactions (2)

“The current sequence diagram notation
offers little help to structure specifications
using sequence diagrams nor does it
provide an overview of how these sequence
diagrams are related to each other.”

“The current sequence diagram notation
offers little help to structure specifications
using sequence diagrams nor does it
provide an overview of how these sequence
diagrams are related to each other.”

© Telelogic 2000

UML, SDL & UML 2.0

Organizing Sequence Diagrams:
High-level MSCs

structuring of
MSCs

a compact way of
describing several
MSCs

extremely useful for large requirements specifications

© Telelogic 2000

UML, SDL & UML 2.0

Managing Complex Projects

• Establish team responsibilities
– packages
– reusable agents, frameworks

• Establish team interfaces
– static: interfaces
– dynamic: sequence diagrams

• high-level MSCs
• MSC references
• inline expressions
• decomposition

© Telelogic 2000

UML, SDL & UML 2.0

Challenges

• Managing software complexity
– Run-time Architecture
– Viewpoints

• Managing project complexity
– Work structuring
– Contracts

•• Enabling quality and productivityEnabling quality and productivity
– Visual software development

© Telelogic 2000

UML, SDL & UML 2.0

Visual Modelling

• Requirements
– MSCs
– Use case diagrams

• Application architecture
– Agents

• Static Structure
– Class diagrams

• Work structure
– Package diagrams

• Physical architecture
– Deployment/Component

diagrams

Enforces quality in the product
and skill in the development teams

© Telelogic 2000

UML, SDL & UML 2.0

Visual Modeling - The Problem

• Make sure that
what you see is
what you get!

© Telelogic 2000

UML, SDL & UML 2.0

Visual Software Development

Visual software development
= Visual modeling
+ Behavioral modeling

• action notation
• data model

+ Run-time semantics

• Consequences:
• High-level application specific modeling
• Automated application generation
• The diagrams are both documentation

and source code

© Telelogic 2000

UML, SDL & UML 2.0

State-Centric State Machines

• State charts / state
overview

• Provide overview
• Focus on states

– transitions between
states

Wait

Idle

1(1)DataLayer2

FromPhysicalLayer2

FromPhysicalLayer2
T1

FromNetworkLayer2

T1

© Telelogic 2000

UML, SDL & UML 2.0

Transition-Centric State Machines

• Activity diagrams / State
machines

• Provide detailed view
• Focus on transitions

– state to state behavior
– actions
– control flow
– communication

process DataLayer2 Idle(1)

Idle

FromPhysicalLayer2
(r)

r!seq=expected

ToNetworkLayer2
(r! info)

expected:=1-expected;

r!ack=next

Wait

s!info:=buf fer,
s!seq:=next,

s!ack:=1-expected

ToPhysicalLayer2
(s)

SET
(NOW+100000, T1)

Idle

T1

false

false

true

true

© Telelogic 2000

UML, SDL & UML 2.0

Textual Algorithms

• Focus on data
manipulation and
algorithms

procedure max
 (I,J Integer)
 -> Integer
{
 if (I>J) {
 return I;
 } else {
 return J;
 }
}

Process P1 1(1)

st1

s1 s3(i)

s2
if (i>2)
 j:= 4;
else {
 j := max(i,7);
}

- -

© Telelogic 2000

UML, SDL & UML 2.0

Model Execution

• Behaviour + run time semantics
= Model execution
 enables
• Execution based refinement
• Early verification
• Feedback directly in model
• Testing of incomplete systems

Focus on logical design

© Telelogic 2000

UML, SDL & UML 2.0

From Model to Application:
Implementation Diagrams

• Nodes / Components /
Connections

• Physical component
vs. agent mapping

• Thread policies …
• Defines build process

Focus on physical design

© Telelogic 2000

UML, SDL & UML 2.0

Visual Software Development

• Quality: Focus on understanding
– Visual modeling
– Model execution
– Documentation is source code

• Productivity: Automation &
specialization
– High-level application specific modeling
– Automated application generation

© Telelogic 2000

UML, SDL & UML 2.0

• Managing software complexity
– Viewpoints
– Run-time architecture

• Managing project complexity
– Work structuring
– Contracts

• Enabling quality and productivity
– Visual software development

Challenges

“Time to market”

“Life-cycle cost”

“Quality”

“Productivity”

