From Play-In Scenarios To Code: An Achievable Dream

David Harel*

IEEE Computer, to appear. Preliminary version in Proc. Fundamental Approaches to
Software Engineering (FASE), Lecture Notes in Computer Science, Vol. 1783,
Springer-Verlag, March 2000, pp. 22-34.

Abstract

A development scheme for complex reactive systems leads from a user-friendly method
for playing in scenarios, to full behavioral descriptions of system parts, and from there to
final implementation. The entire scheme, which includes a cyclic processe of verification
and synthesis, should be supported by semantically rigorous automated tools.

Keywords: Code generation, Executable specifications, Play-in scenarios, Reactive system,
Sequence charts, Software engineering, Statecharts, Synthesis, Verification.

In a 1992 Computer article [4], I tried to present an optimistic view of the future of devel-
opment methods for complex systems. Research since then only supports this optimism, as the
present article will attempt to show.

A general, rather sweeping development scheme is proposed, combining ideas that have been
known for a long time with some more recent ones. The scheme makes it possible to go from
a high-level, user-friendly requirements capture method, which we shall call play-in scenarios,
via a rich language for describing message sequencing, to a full model of the system, and from
there to final implementation. A cyclic process of verifying the system against requirements and
synthesizing system parts from the requirements is central to the proposal. We put a special
emphasis on the languages, methods and computerized tools that allow for smooth but rigorous
transitions between the various stages of the scheme.

In contrast to database systems, we shall be interested here in systems that have a dominant
reactive, event-driven facet. For these, modeling and analyzing behavior is the most crucial and
problematic issue. Such systems are often embedded systems with a real time facet.

*The Weizmann Institute of Science, Rehovot, Israel. Email: harel@wisdom.weizmann.ac.il.



code .
generation

system model

(XUML or SA/SD)

Figure 1: System modeling with full code generation

Modeling the system

Over the years, the main approaches to high-level system modeling have been structured-
analysis/structured-design (SA/SD), and object-oriented analysis and design (OOAD). The two
are about a decade apart in initial conception and evolution. Over the years, both approaches
have yielded visual formalisms for capturing the various parts of a system model, most notably
its structure and behavior. The linking of structure and behavior is crucial, and is by no means
a straightforward issue. In SA/SD, for example, each system function or activity is associated
with a state machine or a statechart [3], which describes its behavior. In OOAD, as evident in
the UML [12] and its executable basis, the XUML [5], each class is associated with a statechart,
which describes the behavior of every instance object. See the boxes “Structured Analysis and
Structured Design” and “Object-Oriented Analysis and Design”.

An indispensible part of any serious modeling approach is a rigorous semantical basis for
the model constructed — notably, for the behavioral parts of the model and their connection
with the structure. It is this semantics that leads to the possibility of executing models and
running actual code generated from them. See Figure 1. (The code need not necessarily
result in software; it could be in a hardware description language, leading to real hardware.)
Obviously, if we have the ability to generate full code, we would eventually want that code
to serve as the basis for the final implementation. Some current tools, like Statemate and
Rhapsody from I-Logix, Inc., or Rose RealTime from Rational Corp., are in fact capable of
producing quality code, good enough for the implementation of many kinds of reactive systems.
And there is no doubt that the techniques for this kind of ‘super-compilation’ from high-level
visual formalisms will improve in time. Providing higher levels of abstraction with automated



code .
generation

testing and debugging;
PP model execution, - =~
// \\ ’ -—
’ -
.+ use-cases REPe
\\\ //’ Yi //
Toe--r T ’,’
\ I 17/
\\ |\ , ",I/
N \ - ’

requirements ) .-’
~ “development
methodologies

(message sequence charts) (XUML or SA/SD)

Figure 2: System modeling with ‘soft’ links to requirements

downward transformations has always been the way to go, as long as the abstractions are ones
with which the engineers who do the actual work are happy.

Specifying requirements

When developing a complex system, it is very important to be able to test and debug the model
prior to investing extensively in implementation. Hence the desire for executable models [4].
The basis for testing and debugging by executing the model are the requirements, which, by
their very nature, constitute the constraints, desires and hopes we entertain concerning the
system under development. We want to make sure, both during development and when we feel
development is over, that the system does, or will do, what we intend or hope for it to do. See
Figure 2.

Requirements can be formal (rigorously and precisely defined) or informal (written, say, in
natural language or pseudocode). However, since this article is concerned mainly with processes
that can be automated, the focus will be on formal requirements.

Ever since the early days of high level programming, computer science researchers have
grappled with the question of how to best state what we want of a complex program or system.
Notable efforts are those embodied in the classical Floyd/Hoare invariant assertions method,
with its pre- and post-conditions and termination statements [1], and in the many variants of
temporal logic [8]. These make it possible to express the two main kinds of requirements of



interest in complex modeling of reactive systems. The first is safety requirements, which say that
a bad thing can’t happen; for example, this program will never terminate with the wrong answer,
or this elevator door will never open between floors. The second type is liveness requirements,
which say that good things must happen. For example, this program will eventually terminate,
or this elevator will open its door on the desired floor within the allotted time limit.

A more recent way to specify requirements, which is popular in the realm of object-oriented
systems, is to use message sequence charts (MSCs). The International Telecommunications
Union (the ITU, fomerly the CCITT) adopted this visual language as a standard long ago [9].
It also manifests itself in the UML in a slightly weaker way as the language of sequence diagrams
(see [12]). MSCs, or UML’s sequence diagrams, are used to specify scenarios as sequences of
message interactions between object instances. This approach meshes very nicely with use-
cases [7], the informal statement of the possible ways the system can be used: in the early
stages of system development, engineers typically come up with use-cases, and then specify
the scenarios that instantiate them. This captures the desired inter-relationships between the
processes, tasks, or object instances — and between them and the environment — in a way
that is linear or quasi-linear in time. (Tasks and processes are netioned here too, since although
much of our discussion is couched in the terminology of object-orientation and the UML, there
is nothing special to objects in the points being made.) In other words, the modeler uses MSCs
to specify the scenarios, or the ‘stories’, that the final system should, and hopefully will, satisfy
and support, and these scenarios are instantiations of the more abstract and generic use cases.

Requirements vs. the system model

It is important to realize that use cases and scenarios are not part of the system. They are
part of the requirements from the system, as Figure 2 shows. They are constructed in order to
capture the scenarios that we would like our system will satisfy, when implemented.

It is interesting to compare the inter-object ‘one-story-for-all-objects’ approach that se-
quence charts reflect, with the dual intra-object ‘all-stories-for-one-object’ approach manifest
in the XUML modeling of objects using statecharts. In contrast to scenarios, modeling with
statecharts is typically carried out at a later stage, and results in a full behavioral specification
for each object instance (or task or process), providing details of its behavior under all possible
conditions and in all possible ‘stories’. provided in the inter-object sequence charts.

The intra-object specification is at the heart of the system model of Figures 1 and 2, since
it is directly implementable; ultimately, the final software will consist of code specified for each
object. In contrast, the requirements cannot be implemented. A collection of MSC scenarios
cannot be considered an implementable model of the system: How would such a system operate?
What would it do under general dynamic circumstances? Thus, MSCs, or UML’s sequence
diagrams, provide the requirements on behavior, stating our desires about how the system
should behave when implemented, whereas statecharts — as linked to the class diagrams in the
XUML — provide the implementable behavior itself.



Consider now the arrows in Figure 2 between the requirements and the system model.
These arrows are dashed for a reason: they do not represent rigorous, comprehensive, computer
supported processes. Going from the requirements to the model is a long-studied issue, and
many system development methodologies provide guidelines, heuristics, and sometimes carefully
worked-out step-by-step processes for this. However, as good and useful as these processes are,
they are ‘soft’ methodological recommendations on how to proceed, not rigorous and automated
methods.

The arrow going from the system model to the requirements depicts testing and debugging
the model against the requirements, using model execution. Here is a nice way to do this, which
is supported by the Rhapsody tool. Assume the user has specified the requirements as a set of
sequence diagrams, perhaps instantiating previously prepared use-cases. For simplicity, let us
say that this results in a diagram called A. Later, when the system model has been specified, the
user can ask the Rhapsody tool to execute it in the following way. During execution, animated
sequence diagrams will be automatically constructed, on the fly, showing the dynamics of object
interaction as they actually happen during execution. Assume that this results in diagram B.
When this execution is completed, Rhapsody can be asked to compare diagrams A and B,
and to highlight any inconsistencies, such as contradictions in the partial order of events, or
other differences, such as events appearing in one diagram but not in the other. In this way,
Rhapsody helps debug the behavior of the system against the requirements.

While this is a powerful and very useful way to check the behavior of a system model,
it is limited to those executions that we actually carry out, and thus suffers from the same
drawbacks as classical testing and debugging. Since a system can have an infinite number of
runs, some will always go unchecked, and it could be those that violate the requirements (in
our case, by being inconsistent with diagram A). As Edsger Dijkstra famously put it years
ago, “Testing and debugging cannot be used to demonstrate the absence of errors, only their
presence”. This ‘softness’ of the debugging process is the reason the arrow from the system
model to the requirements is dashed too.

Sequence charts and live sequence charts

Two points must now be made regarding sequence charts. The first is one of exposition: by and
large, the subtle difference in the roles of sequence-based languages for behavior and component-
based ones is not made clear in the literature. Again and again, one comes across articles and
books in which the very same phrases are used to introduce sequence diagrams and statecharts.
At one point such a publication might say that “sequence diagrams can be used to specify
behavior”, and later it might say that “statecharts can be used to specify behavior”. Sadly,
the reader is told nothing about the fundamental difference between the two — that one is a
medium for conveying requirements and one is part of the system model — and about the very
different ways they are to be used. This obscurity is one of the reasons many naive readers
come away confused and puzzled by the multitude of diagram types in the full UML standard,



and the lack of clear recommendations about what it means to specify a system.

The second point is more substantial. As a requirements language, all known versions of
MSCs, including the ITU standard [9] and the sequence diagrams adopted in the UML [12],
are extremely weak in expressive power. Their semantics is little more than a set of simple
constraints on the partial order of possible events in some possible system execution. Virtually
nothing can be said in MSCs about what the system will actually do when run. These diagrams
can state what might possibly occur, not what must occur. Thus, amazingly, if one wants to be
puristic, then under most definitions of the semantics of MSCs, an empty system — one that
doesn’t do anything in response to anything — satisfies any such chart. So just sitting back
and doing nothing will make your requirements happy. (Usually, however, there is a minimal,
often implicit, requirement that each one of the specificed sequence charts should have at least
one run of the system that winds its way correctly through it.)

Another troublesome drawback of MSCs is their inability to specify unwanted scenarios.
These antiscenarios are ones whose occurrence we want to forbid, and they are crucial in
setting up safety requirements.

In a recent paper these deficiencies have been addressed, and an extension of MSCs, called
live sequence charts (or LSCs) has been proposed [2]. As the name implies, LSCs can deal
with specifying liveness, i.e., things that must occur. This is done by allowing the distinction
between possible and necessary behavior both globally, on the level of an entire chart, and
locally, when specifying events, conditions and progress over time within a chart. The live, or
hot, elements, make it possible to also specify antiscenarios. The others, termed cold, can be
used to support branching and iteration.

To give a flavor of how LSCs work, here is how they deal with conditions, or guards. Assume
that P is a hot condition appearing at a certain location in the chart. Then P must be true
if and when that location is reached during a system run, and if it is not the system aborts.
In other words, P really must be true, otherwise we have an unforgivable error. In this way,
modelers can specify anti-scenarios (an elevator door opening when it shouldn’t, or a missile
firing when the radar is not locked on the target). In contrast, if P were a cold condition,
then it also should be true if and when the location is reached, but if it is not true there is no
catastrophe. Rather, the execution merely exits, and we simply move up one level; out of the
present chart if P is on the top level of the chart, or out of the subchart and continuing from
outside of it if P is inside a subchart block. This makes it possible to specify control structure
constructs, such as if-then-else and while-do, using P as a controlling guard.

It is not yet clear whether LSCs is exactly what we need, and a lot more work is definitely
required. Experience using the language must be gained, and good implementations must be
constructed. But the proposal for extending MSCs has now been made, rendering LSCs a
candidate for a far more powerful way of visually specifying behavioral requirements. Since
their expressive power is far greater than MSCs (it is essentially that of XUML itself), LSCs
also make it possible to start looking more seriously at the aforementioned dichotomy of reactive
behavior, namely, the relationship between the inter-object requirements view and the intra-



code .
generation

system model

model-code
association

verification

requirements

(LSCsor temp. logic) (XUML or SA/SD)

Figure 3: System modeling with ‘hard’ links to requirements
object implementable model view.

Verification and synthesis

Let us now consider Figure 3, in which the two dashed arrows between the requirements and
the model have been made solid. We are now talking about the possibility of having at our
disposal ‘hard’, formal and rigorous, and mainly fully automatable, links between the system
model (in XUML [5], for example, or in a suitable version of SA/SD) and the requirements (in
LSCs [2], for example, or in temporal logic [8] or timing diagrams [11]).

Going from the system model to requirements, instead of testing and debugging by executing
models, we are interested in checking the system model against the requirements using true
verification. This is not what CASE-tool people in the 1980s often called “validation and
verification”, which did not amount to much more than consistency checking of the model’s
syntax. What we have in mind is a mathematically rigorous and precise proof that the model
satisfies the requirements, and we want this to be done automatically by a computerized verifier.
Since we are using powerful languages like LSCs (or the analogous temporal logics or timing
diagrams) this means far, far more than merely executing the system model and making sure
that the sequence diagrams you get from the run are consistent with the ones you prepared
in advance. It means making sure, for example, that the things an LSC say must not happen
(the anti-scenarios), will indeed never happen, and the things it says must happen (or must



happen within certain time constraints), will indeed happen. These are facts that, in general,
no amount of execution can verify.

This article is not a treatise on verification, so I will not say too much about it here.
However, although verification in general constitutes a non-computable algorithmic problem,
the idea of rigorously verifying programs and systems — hardware and software — has come a
long way since the pioneering work on invariant assertions and the later work on temporal logic
and model checking. These days we can safely say that true verification can be carried out in
many, many cases, especially in the finite-state ones that arise in the realm of reactive real-time
systems. A version of the Statemate tool with true verification capabilities has recently been
constructed, and will be released as a product very shortly. Doing the same for an OOAD tool
like Rhapsody or Rose RealTime is just a matter of time. Before long, I believe, we will be
routinely using automated tools to verify models agains requirements.

In the opposite direction, going from the requirements to the model, we have synthesis.
Instead of guiding system developers in informal ways to try to build models according to their
dreams and hopes, we would very much like our tools to be able to synthesize directly from
those dreams and hopes, if they are indeed implementable. We want to be able to automatically
generate a system model from the requirements. (For the sake of the discussion, we assume
that the structure — the division into objects or components, for example — has already been
determined.)

This is a whole lot harder than synthesizing code from a system model, which is really but
a high-level kind of compilation. The duality between the scenario style (requirements) and the
statechart style (modeling) in saying what a system does over time renders the synthesis of an
implementable system model from sequence-based requirements a truly formidable task. It is
not too hard to do this for the weak MSCs, which can’t say much about what we really want
from the system. It is a lot more difficult for far more realistic requirements languages, such as
LSCs or temporal logic.

How can we synthesize a good first approximation of the statecharts from the LSCs? Sev-
eral researchers have addressed similar issues in the past, resulting in work on certain kinds of
synthesis from temporal logic [10] and timing diagrams [11]. More recently, in [6], a first-cut
attempt at algorithms for synthesizing state-machines and statecharts from LSCs has been re-
ported (albeit, in a slightly restricted setup and for the time being yielding very large models).
This is done by first determining whether the requirements are consistent (whether there exists
any system model satisfying them), then proving that being consistent and having a model (be-
ing implementable) are equivalent notions, and then using the proof of consistency to synthesize
an actual model. There is still a lot of rather deep research to be done here, and work is in
progress as this is being written. I believe that synthesis will eventually end up like verification
— hard in principle but not beyond a practical and useful solution.

Figure 3 also contains a solid arrow in the right-hand upper part of the figure, going from the
code to the system model. This indicates the ability of the developer to ‘round-trip’ back from
the code to the model. Making certain kinds of changes in the former reflects automatically



back as changes in the visual formalisms of the latter. Such an ability renders the classical
cycle of activities that takes place between design and implementation easier and less error
prone. A modest (but very useful) form of this model-code association is already available in
the Rhapsody tool. There is reason to believe that this kind of ability will also be commonplace
in the future, and that the techniques enabling it will become more powerful and far broader
in applicability.

How should development proceed?

It is tempting to say that if the situation is as in Figure 3, we don’t need the arrows going
from right to left at all, and developers can do without verification or testing or model-code
association. A system developer will be able to go directly and smoothly from desires to results:
state your requirements, get your tool to synthesize the system model, then get it to generate
code from the model, and you are all set!

Obviously, this is not the case. Systems will always have to be developed incrementally, with
various cycles of activity taking place, possibly according to the spiral philosophy of develop-
ment. Such a methodology would call for cycles of development, producing continuously refined
and extended versions of the system. One kind of cycle would be between the requirements and
the model, incrementally extending and refining the system under development by following
the dashed arrows of Figure 2 — development methodologies and testing and debugging — and
the solid ones of Figure 3 — synthesis and verification. The other (less significant) one would
do the same between the model and the implementation in code, repeatedly fine tuning the
final artifact.

While the more ambitious parts of this article implicitly suggest that the classical life cycle
models might eventually have to be modified somewhat, I am not claiming to have worked
out a full step-by-step methodology for how to proceed in developing a system, but to have
discussed the various parts of such a methodology, the languages and tools they involve, and
their inter-relationships. In order to be able to propose a full-blown methodology, we will need
more than a few examples appearing in hastily written methodology books, that are wisdom-
rich but technically shallow. Rather, we shall have to rely on the deep and profound knowledge
and rigor that will accumulate from years of experience in using these techniques. It will not
happen overnight, even if all the required tools were just around the corner.

Play-in scenarios

To complete the dream I've tried to sketch, we need one last piece: a far more convenient
way of setting up the behavioral requirements, suitable not only for system engineers but for
their clients — such as the users and contractors. I would thus like to introduce an idea
that T will call play-in scenarios. When you execute a model, you play-out a scenario. This
becomes apparent when you use the tool’s ability to execute models interactively, and it becomes



code
generation

system model
. use-cases
model-code
T @ association
play-out scenarios \
and
verification
requirements
methodol ogies
and
synthesis
(LCSsor temp. logic) (XUML or SA/SD)

Figure 4: The dream in full

especially transparent and impressive (useful too) when you work with a soft panel mock-up of
the system’s final interface or even with the system’s actual hardware, as is possible in the tools
mentioned earlier. You can play-out a scenario by standing in, so to speak, for the system’s
environment, introducing events and changes in values, and observing the results as they unfold
[4]-

What I am proposing here is to play-in scenarios. This can be done prior to building any
behavioral model of the system, in order to set up the requirements, perhaps driven by use-
cases. The scenarios will not be specified using conventional languages, visual or otherwise, but
by working directly opposite a mock-up of the system’s interface, using a highly user-friendly
method of ‘teaching’ your tool about the desired and undesired scenarios.

Think of a graphical image of cellular phone, for example, appearing in the screen. There
is nothing ‘beneath’ it: no behavior whatsoever has been specified for it yet. You now start
entering scenarios by clicking and dragging, playing in the user’s inputs and the system’s re-
sponses, indicating whether things are hot or cold, instantiated or generic, and more. The
interactive process also includes means for refining the system’s structure as you progress, by
forming composite objects and their aggregates and setting up inheriting objects.

As the process of playing in the scenario-based requirements continues, the underlying tool
— the play-in engine — will automatically and incrementally generate the formal LSCs (not
merely MSCs), or the temporal logic formulas, that accurately capture the played-in scenarios.
Thus, we are automating the construction of rigorous and comprehensive requirements from a

10



friendly, intuitive and user-oriented play-in capability, rather than employing abstract engineer-
oriented languages.

Here too, there is much research still to be done. While the idea of play-in scenarios has
a nontrivial mathematical/algorithmic side, a large part of the effort needed is related to its
human aspects. There must be powerful, yet natural and easy-to-use means for interacting with
an essentially behavior-free ‘system shell’, in order to tell it what we want from it. A separate
paper will be devoted to describing the details of the first version of a play-in environment that
I have been developing with a collegue.

The complete system development dream is summarized in Figure 4.

It is probably no great exaggeration to say that there is a lot more that we don’t know and
can’t achieve yet in this business than what we do know and can achieve. Besides the topics
we have discussed, there are many additional issues that we haven’t touched upon here at all,
which require lots and lots of further research and development in order to be satisfactorily
incorporated into the overall scheme. They include real time analysis, automatic diagram
layout, and dealing with hybrid systems that have continuous as well as discrete facets.

The efforts of scores of researchers, methodologists and language designers have resulted
in a lot more than we could have hoped for a decade or more ago, and for this we should be
thankful and humble. However, there is a long road ahead. Still, there is a dream in the offing.
It is a dream of many parts, several of which are not even close to being fully available, but
the dream is not unattainable. If it comes true, it could have a significant effect on the way
complex systems are developed.

11



Structured Analysis and Structured Design

SA/SD, which started in the late 1970s, is based on raising classical procedural programming
concepts to the modeling level and using diagrams, or visual formalisms, as the languages for
modeling system structure. Structural models are based on functional decomposition and in-
formation flow, and are depcited by hierarchical dataflow diagrams. Many methodologists were
instrumental in setting the ground for the SA/SD paradigm, by devising the functional decom-
position and dataflow diagram framework, including Tom DeMarco [2] and Larry Constantine
and Ed Yourdon [1]. David Parnas’ work over the years was very influential too.

In the mid-1980s, several methodology teams enriched this basic SA/SD model by providing
a way to add behavior to these efforts, using state diagrams or the richer language of statecharts
[3]. These are Ward and Mellor [13], Hatley and Pirbhai [7], and the Statemate team [4]. A state
diagram or statechart is associated with each function or activity, describing its behavior. Many
nontrivial issues had to be worked out to properly connect structure with behavior, enabling
the modeler to construct a comprehensive and semantically rigorous model of the system; it
is not enough to simply decide on a behavioral language and then associate each function or
activity with a behavioral description. (This would be like saying that when you build a car
all you need are the structural things — body, chassis, wheels, etc. — and an engine, and you
then merely stick the engine under the hood and you are done.) The three teams struggled
with this issue, and their decisions on how to link structure with behavior ended up being very
similar. Careful behavioral modeling and its close linking with system structure are especially
crucial for reactive systems [5, 10], of which real-time systems are a special case.

Statemate, released in 1987, was the first commercial tool to enable model execution and
code generation from high-level models [4] (see also http://www.ilogix.com). An updated and
detailed summary of the SA/SD languages for structure and behavior, their relationships and
the way they are embedded in Statemate appears in [6].

Of course, modelers need not adopt state machines or statecharts to describe behavior.
There are many other possible choices, and these could have been linked with the SA/SD
diagrams for specifying the structure and data flow in ways similar to those just mentioned.
They include such visual formalisms as Petri nets or SDL diagrams, and more algebraic ones
like CSP or CCS [11, 12, 8, 9].

[1] Constantine, L. L., and E. Yourdon, Structured Design, Prentice-Hall, Englewood Cliffs,
1979.

[2] DeMarco, T., Structured Analysis and System Specification, Yourdon Press, New York, 1978.

12




[3] Harel, D., “Statecharts: A Visual Formalism for Complex Systems”, Sci. Comput. Prog.
8 (1987), 231-274. (Preliminary version appeared as Tech. Report CS84-05, The Weizmann
Institute of Science, Rehovot, Israel, Feb. 1984.)

[4] Harel, D., H. Lachover, A. Naamad, A. Pnueli, M. Politi, R. Sherman, A. Shtull-Trauring,
and M. Trakhtenbrot, “STATEMATE: A Working Environment for the Development of Com-
plex Reactive Systems”, IEEE Trans. Soft. Eng. 16 (1990), 403-414. (Preliminary version in
Proc. 10th Int. Conf. Soft. Eng., IEEE Press, New York, 1988, pp. 396—406.)

[5] Harel, D., and A. Pnueli, “On the Development of Reactive Systems”, in Logics and Models
of Concurrent Systems, (K. R. Apt, ed.), NATO ASI Series, Vol. F-13, Springer-Verlag, New
York, 1985, pp. 477-498.

[6] Harel, D., and M. Politi, Modeling Reactive Systems with Statecharts: The STATEMATE
Approach, McGraw-Hill, 1998.

[7] Hatley, D., and 1. Pirbhai, Strategies for Real- Time System Specification, Dorset House, New
York, 1987.

[8] Hoare, C.A.R., “Communicating Sequential Processes”, Comm. Assoc. Comput. Mach. 21
(1978), 666-677.

[9] Milner, R., A Calculus of Communicating Systems, Lecture Notes in Computer Science, Vo.
92, Springer-Verlag, Berlin, 1980.

[10] Pnueli, A., “Applications of Temporal Logic to the Specification and Verification of Reactive
Systems: A Survey of Current Trends”, Current Trends in Concurrency (de Bakker et al., eds.),
Lecture Notes in Computer Science, Vol. 224, Springer-Verlag, Berlin, 1986, pp. 510-584.

[11] Reisig, W., Petri Nets: An Introduction, Springer-Verlag, Berlin, 1985.

[12] SDL: ITU-T Recommendation Z.100, Languages for telecommunications applications:
Specification and description language, Geneva, 1999.

[13] Ward, P., and S. Mellor, Structured Development for Real-Time Systems (Vols. 1, 2, 3),
Yourdon Press, New York, 1985.

13




Object-Oriented Analysis and Design

The late 1980s saw the first proposals for object-oriented analysis and design (OOAD).
As in SA/SD, the basic idea in modeling system structure was to lift concepts up from the
programming level to the modeling level and to use visual formalisms. Inspired by entity-
relationship (ER) diagrams [2], several methodology teams recommended various forms of class
and object diagrams for modeling system structure [1, 3, 7, 9]. To model behavior, most object-
oriented modeling approaches adopted statecharts [4]. Each class has an associated statechart,
which describes the behavior of any instance object.

In the OOAD world, the issue of connecting structure and behavior is subtler and a lot
more complicated than in the SA/SD one. Classes represent dynamically changing collections
of concrete objects. Behavioral modeling must thus address issues related to object creation
and destruction, message delegation, relationship modification and maintenance, aggregation,
inheritance, and so on. The links between behavior and structure must be defined in sufficient
detail and with enough rigor to support the construction of tools that enable model execution
and full code generation. Only a few tools have been able to do this. One is ObjectTime,
which is based on the Real-Time Object-Oriented Modeling (ROOM) method of [9], and is now
part of the Rational RealTime tool (see http://www.rational.com). Another is Rhapsody (see
http://www.ilogix.com), which is based on the work of Eran Gery and the present author in
[5], on executable object modeling with statecharts.

The work reported on in [5] centers on a carefully constructed language set that includes
class/object diagrams adapted from the Booch method [1] and the OMT method [7], driven by
statecharts for behavior. This pair of languages also serves as the executable heart of the Unified
Modelling Language (UML), put together by a team led by Grady Booch, James Rumbaugh
and Ivar Jacobson, which the Object Management Group (OMG) adopted as a standard in
1997 (see http://www.omg.org). The class/object diagrams and the statecharts part of the
UML, as described in [5], is called XUML (for executable UML). Thus, XUML is the part of
UML that specifies unambiguous, executable, and therefore implementable, models.

The UML has several means for specifying more elaborate aspects of system structure and
architecture (for example, packages and components). An important part of the UML for
specifying requirements is Jacobson’s use cases [6]. A large amount of further information on
the UML can be found in the OMG’s web site (http://www.omg.org) or in [8].

[1] Booch, G., Object-Oriented Analysis and Design, with Applications (2nd edn.), Benjamin-
Cummings, 1994.

[2] Chen, P. P., “The Entity-Relationship Model: Toward a Unified View of Data”, ACM Trans.
on Database Systems 1 (1976), 9-36

14




[3] Cook, S. and J. Daniels, Designing Object Systems: Object-Oriented Modelling with Syntropy,
Prentice Hall, New York, 1994.

[4] Harel, D., “Statecharts: A Visual Formalism for Complex Systems”, Sci. Comput. Prog.
8 (1987), 231-274. (Preliminary version appeared as Tech. Report CS84-05, The Weizmann
Institute of Science, Rehovot, Israel, Feb. 1984.)

[5] Harel, D., and E. Gery, “Executable Object Modeling with Statecharts”, Computer (July
1997), 31-42.

[6] Jacobson, 1., Object-Oriented Software Engineering: A Use Case Driven Approach, ACM
Press/Addison-Wesley, 1992.

[7] Rumbaugh, J., M. Blaha, W. Premerlani, F. Eddy and W. Lorensen, Object-Oriented Mod-
eling and Design, Prentice Hall, 1991.

[8] Rumbaugh, J., I. Jacobson and G. Booch, The Unified Modeling Language Reference Manual,
Addison-Wesley, 1999.

[9] Selic, B., G. Gullekson and P. T. Ward, Real-Time Object-Oriented Modeling, John Wiley
& Sons, New York, 1994.

References

[1] Apt, A., Verification of Sequential and Concurrent Programs (2nd edn.), Springer Verlag, New
York, 1997.

2] Damm, W., and D. Harel, “LSCs: Breathing Life into Message Sequence Charts”, Formal Meth-
ods in System Design, to appear. (Preliminary version in Proc. 3rd IFIP Int. Conf. on Formal
Methods for Open Object-Based Distributed Systems (FMOODS’99), (P. Ciancarini, A. Fantechi
and R. Gorrieri, eds.), Kluwer Academic Publishers, 1999, pp. 293-312.)

[3] Harel, D., “Statecharts: A Visual Formalism for Complex Systems”, Sci. Comput. Prog. 8 (1987),
231-274. (Preliminary version appeared as Tech. Report CS84-05, The Weizmann Institute of
Science, Rehovot, Israel, Feb. 1984.)

[4] Harel, D., “Biting the Silver Bullet: Toward a Brighter Future for System Development”, Com-
puter (Jan. 1992), 8-20.

[5] Harel, D., and E. Gery, “Executable Object Modeling with Statecharts”, Computer (July 1997),
31-42.

[6] Harel, D., and H. Kugler, “Synthesizing State-Based Object Systems from LSC Specifications”,
Proc. Fifth Int. Conf. on Implementation and Application of Automata (CIAA 2000), Lecture

15



[7]

(8]

[9]
[10]

[11]

[12]

Notes in Computer Science, Springer-Verlag, 2000, to appear. (Also, Tech. Report MCS99-20,
The Weizmann Institute of Science, Rehovot, Israel, Oct. 1999.)

Jacobson, I., Object-Oriented Software Engineering: A Use Case Driven Approach, ACM
Press/Addison-Wesley, 1992.

Manna, Z., and A. Pnueli, The Temporal Logic of Reactive and Concurrent Systems: Specification,
Springer-Verlag, New York, 1992.

MSCs: ITU-T Recommendation Z.120: Message Sequence Chart (MSC), ITU-T, Geneva, 1996.

Pnueli, A., and R. Rosner, “On the Synthesis of a Reactive Module”, Proc. 16th ACM Symp. on
Principles of Programming Languages, Austin, TX, January 1989.

Schlor, R. and W. Damm, “Specification and verification of system-level hardware designs us-
ing timing diagrams”, Proc. European Conference on Design Automation, Paris, France, IEEE
Computer Society Press, pp- 518 — 524, 1993.

Unified Modeling Language (UML) documentation, available from the Object Management Group
(OMG), http://www.omg.org.

16



