
Embedded ApplicationEmbedded Application
Architecture designArchitecture design

EPEP--ATRATR

Paul Le Guernic, Thierry Gautier
IRISA/INRIA EP-ATR Project

December 1, 2000 Acotris 2

PolychronyPolychrony
● Real time and embedded system design

Coding

Functional Design

Specification

Formal
Prototype
Simulation

Architectural Design
Formal, Timing, ...

Verifications

Aided, Automatic
Transformations

December 1, 2000 Acotris 3

The core modelThe core model
Synchronized data flowSynchronized data flow

b

a

c

a^=b^=c

*
*

*4

0
-

>

0 ≠≠≠≠ root

-
*

2

/

+-

/

r1

r2

December 1, 2000 Acotris 4

ContentsContents

● Synchrony vs a-synchrony
● Signal flow model (Relational level)

● Designing with Signal
● Polychrony: functionalities

December 1, 2000 Acotris 5

SynchronySynchrony vsvs AA--synchronysynchrony

● Process composition
– A-synchronous: processes are driven by different a-

synchronized clocks, each progressing at its own pace

– Synchronised: some implicit or explicit synchronization rules
are introduced (relations on communications) CCS

– Synchronous: processes are driven by a single global clock
such that an “atomic” action is activated at each tick SCCS

December 1, 2000 Acotris 6

SynchronySynchrony vsvs AA--synchronysynchrony

● Communication
– A-synchronous:asynchronous interaction indicates the

fact that data transfer between processes may take
unbounded amount of time and may need unbounded
amount of memory to hold sent and unreceived values
(interaction points in ESTELLE)

– Synchronized: some implicit or explicit synchronization
rules are introduced: bounded FIFO

– Synchronous: Communication occurs in a fixed number of
ticks of each participant (RdV, signal in VHDL, Lustre, Signal
including windows, StateMate,…)

December 1, 2000 Acotris 7

SynchronySynchrony vsvs AA--synchronysynchrony
Virtual discrete time abstractionVirtual discrete time abstraction

● High Level: Virtual discrete time

+a
b c

Reals Floats

continuous
ordinal

a a1 a2 a3 a4 a5

b

a6

b1 b2 b3 b4 b5

c

b6

c1 c2 c3 c4 c5 c6

December 1, 2000 Acotris 8

SynchronySynchrony vsvs AA--synchronysynchrony
Relating virtual discrete time to Relating virtual discrete time to

real timereal time
● Consistency of synchronous hypothesis

Real time

– Bounded number of internal actions
● Lustre, Esterel, Signal: no instantaneous while

Tick

● Checking: Needs actual target architecture

December 1, 2000 Acotris 9

SynchronySynchrony vsvs AA--synchronysynchrony
Some synchronous languagesSome synchronous languages

ModelsModels
● St+1=Fs(St, Xt) Ot+1=Fs(St, Xt)

– VHDL Synopsis, ...
– STATEMATE ILogix

● St+1=Fs(St, Xt) Ot=Fs(St, Xt)
– Esterel
– Lustre Scade Telelogic
– Signal Sildex TNI
– Silage

December 1, 2000 Acotris 10

Signal Signal
a language for the core modela language for the core model

Fundamental relationFundamental relation
X :=: Y

In this process, for all flows, X and Y have
- the same discrete clock
- the same sequence of values

⇒ Communications are synchronous in discrete clock

Synchronization can be relaxed

December 1, 2000 Acotris 11

● A signal:
– a name
– a discrete clock: a discrete total order, the set of

instants
– a sequence of values: a value associated with each

instant

Signal flow modelSignal flow model
Relational levelRelational level

v0, v1, v2, v3, v4, v5,...
X

December 1, 2000 Acotris 12

● A flow:
– a set of signals with distinct names

Signal flow modelSignal flow model
Relational levelRelational level

v0, v1, v2, v3, v4, v5,...
X

w0, w1, w2, ...
Y

– Using ⊥⊥⊥⊥ to represent absence: events

X

Y w0 ⊥⊥⊥⊥ w1 ⊥⊥⊥⊥ w2 ⊥⊥⊥⊥ ⊥ ⊥⊥⊥

v0 v1 ⊥⊥⊥⊥ v2 v3 v4 v5

December 1, 2000 Acotris 13

● Traces and flow:
– a flow is a compacted trace (silent events removed)

Signal flow modelSignal flow model
Relational levelRelational level

X

Y w0 ⊥⊥⊥⊥ w1 ⊥⊥⊥⊥ w2 ⊥⊥⊥⊥ ⊥ ⊥⊥⊥

v0 v1 ⊥⊥⊥⊥ v2 v3 v4 v5

X

Y w0 ⊥⊥⊥⊥ ⊥ ⊥⊥⊥ n w1 ⊥⊥⊥⊥ w2 ⊥⊥⊥⊥ ⊥ ⊥⊥⊥

v0 v1 ⊥⊥⊥⊥ n ⊥⊥⊥⊥ v2 v3 v4 v5

December 1, 2000 Acotris 14

● Process:
– a set of flows: a relation between a set of variables,

i.e., a specification

Signal flow modelSignal flow model
Relational levelRelational level

Each value received in X is sent to Y

X
Y v0 ⊥⊥⊥⊥ v1 ⊥⊥⊥⊥ v2 v3 v4 v5...

v0 v1 ⊥⊥⊥⊥ v2 v3 v4 v5

X
Y v0 v0 v1 v2 v3 ⊥⊥⊥⊥ v4 v5...

v0 v1 ⊥⊥⊥⊥ v2 v3 v4 v5

December 1, 2000 Acotris 15

Signal flow modelSignal flow model
MonochronousMonochronous functionsfunctions

Z :=: X + Y

X ,Y and Z have the same discrete clock: monochronous
the sequence of values of Z is the one to one extension of the
addition operator

∀∀∀∀ t>= 0 Zt=Xt + Yt

December 1, 2000 Acotris 16

Signal flow modelSignal flow model
“State” function“State” function

Y :=: X $ 1 init v0

X and Y have the same discrete clock
the sequence of values of Y is the right-shifted sequence of
values of X (y0 is its first value)

Y :=: X $ Z init V0

X and Y and Z have the same discrete clock
Z is a bounded integer signal (N the bound)
V0 is a vector of N elements

∀∀∀∀ t>0 Yt=Xt-1

Y0= v0

December 1, 2000 Acotris 17

Signal flow modelSignal flow model
Process compositionProcess composition

P1 | P2 The set of flows that satisfy both P1 and P2

X
Y 4 ⊥⊥⊥⊥ 0 6

X
Z

2 5 3
⊥⊥⊥⊥ ⊥⊥⊥⊥ 9

X
Y 4 ⊥⊥⊥⊥ 0 6

2 5 ⊥⊥⊥⊥ 3
Z ⊥⊥⊥⊥ ⊥ ⊥⊥⊥ ⊥⊥⊥⊥ 9

2 5 ⊥⊥⊥⊥ 3

⇒ Synchronisation results from common signal name
composition is asynchronous (or more exactly, truly parallel)

X :=: Y
| Z :=: U

Has 2 distinct, mutually unconstrained clocks

December 1, 2000 Acotris 18

Signal flow modelSignal flow model
Variable abstractionVariable abstraction

P / X The set of flows ∃∃∃∃ X P

X
Y 4 ⊥⊥⊥⊥ 0 6

2 5 ⊥⊥⊥⊥ 3
Z ⊥⊥⊥⊥ ⊥⊥⊥⊥ ⊥⊥⊥⊥ 9

Y 4 0 6
Z ⊥⊥⊥⊥ ⊥ ⊥⊥⊥ 9

P

P / X

December 1, 2000 Acotris 19

Signal flow modelSignal flow model
Signal extractionSignal extraction

X :=: Y when CC

true

false

Y X

Y
X v0 ⊥⊥⊥⊥ ⊥ ⊥⊥⊥ ⊥ ⊥⊥⊥ v3 ⊥⊥⊥⊥ v4

v0 v1 ⊥⊥⊥⊥ v2 v3 ⊥⊥⊥⊥ v4

C T F T ⊥⊥⊥⊥ T F T

C

C=false

C=true

Y X
Polychrony: five clocks

3 basic
an endochronous subset
+ Clock constraints

December 1, 2000 Acotris 20

Signal flow modelSignal flow model
Boolean/clock basic relationsBoolean/clock basic relations

C :=: LeftPresent(x,y)

false

Y

X

true
X

Y w0 ⊥⊥⊥⊥ w1 ⊥⊥⊥⊥ w2 ⊥⊥⊥⊥ w3

v0 v1 ⊥⊥⊥⊥ v2 v3 v4 ⊥⊥⊥⊥

C T T F T T T F

One can then define the event clock of X
as

H :=: ^X
H :=: LeftPresent(X,X)

December 1, 2000 Acotris 21

Signal flow modelSignal flow model
Example: default definitionExample: default definition

Z :=: X default Y
(|X :=: Z when C
| Y :=: Z when not C
| C :=: LeftPresent(X,Y)
| Z ^= C |) / C

(|D :=: LeftPresent(Z,C)
| D :=: LeftPresent(C,Z)|) / D

Where Z ^= C (Z and C have the same clock) is defined as

Can be used to specify
prioritised scheduling

D :=: not C
D F T F

C T F T

December 1, 2000 Acotris 22

Signal flow modelSignal flow model
an asynchronous/synchronous interfacean asynchronous/synchronous interface

(|write :=: CELL when ^write
| read :=: CELL when ^read
| CELL :=: (CELL $ 1 init v) when not LeftPresent(write, read)
| CELL ^= (^write) default (^read) |)/CELL

write and read have two independent discrete clocks

read

write

v0 v0 ⊥⊥⊥⊥ ⊥ ⊥⊥⊥ v3 v3 v3

v0 ⊥⊥⊥⊥ v1 v2 v3 ⊥⊥⊥⊥ ⊥ ⊥⊥⊥

write readcell

December 1, 2000 Acotris 23

Signal flow modelSignal flow model
Plant specificationPlant specification

● Asynchronous behaviour can be described
● Non deterministic input-output behaviour ?

(| N :=: (N$1 init 0) +1
| OUT :=: N when ^OUT
|)/ N

N has a discrete clock which is not visible outside

⇒ OUT holds any increasing sequence of integers

December 1, 2000 Acotris 24

Signal flow modelSignal flow model
Back to as/s interfaceBack to as/s interface

● An interface must be defined between the synchronous
program and its (a)synchronous context

● Esterel, Statemate:
– no way to specify environment behaviour properties in a

system (may only be documentary)
– ⇒ standard implicit interface to detect signal occurrences

● Signal:
– one can specify abstract properties on environment (x and

y exclusive,… any signal program)
– ⇒ interface is implemented as a specific protocol
– ⇒⇒⇒⇒ behaviour can be defined s.t. it remains independent

of implementation architecture: endochrony

December 1, 2000 Acotris 25

Signal flow modelSignal flow model
Back to as/s interfaceBack to as/s interface

● Let a property such that if x>=0 then y is present
– Esterel, Statemate: one could have a contradiction

(Scade) due to global a priori sampling of inputs
– Signal: after getting x and knowing that x is positive

then we will eventually get y
– but when x is not positive or is absent what about y?
To answer this question in a coherent way independently

of implementation architecture, y is associated with an
explicit boolean clock, that can be shared by different
signals

December 1, 2000 Acotris 26

Clock calculusClock calculus
● Functions:

– Structures the control of application
– Solves synchronization constrainsts

● Based on:
– [C] ^+ [not C] = ^C, [C] ^* [not C] = 0
– Returns a forest of clock hierarchies
– Uses BDD package (Berkeley, Sigali)

December 1, 2000 Acotris 27

Signal flow modelSignal flow model
Clock systemClock system

● A clock system on a process P defined on the
variable set A is a function clk:A→ A∪ {ε,•}
satisfying: for any flow F in P and variable x
belonging to A clk(x) ≠ ε implies that

x is present in an event of F if and only if clk(x) is
true in this event (• represents the fastest clock)

● A clock system on a process P is endochronous if
and only if clk(A)= A∪ {•}

December 1, 2000 Acotris 28

Signal flow modelSignal flow model
Clock system: exampleClock system: example

(| N :=: (N$1init 0) +1
| OUT :=: N when ^OUT |) N OUT

ε

(| N :=: (N$1 init 0) +1
| OUT :=: N when ^OUT
| C :=: LeftPresent(OUT,N) |)

N

OUT

•

C

•

Endochronous completion

December 1, 2000 Acotris 29

Signal flow modelSignal flow model
Clock system: CompilerClock system: Compiler

● The “clock calculus” solves clock equations to get
the maximal endochronous sub systems

● It generates a proof obligation when it fails to solve
a constraint

C :=: x>0
| C :=: ^C

Needs to prove that x<=0 never occurs

December 1, 2000 Acotris 30

Signal flow modelSignal flow model
Clock system: CompilerClock system: Compiler

● Clock system is the fundamental tool for many
transformations
– A function adds supplementary boolean variables to get

an endochronous system
– a function computes the clock abstraction of a process

(the clock system of its interface)
– the structure of the clock system can be used for task

generation

December 1, 2000 Acotris 31

Signal flow modelSignal flow model
Clock system: some available functionsClock system: some available functions

– supplementary boolean variables to get an endochronous
system

– Flattening expansion: hierarchy of clocks is reduced to
one level (clock(clock(x))= •

– clock abstraction of a process (the clock system of its
interface)

December 1, 2000 Acotris 32

Signal flow modelSignal flow model
Refinement with Clock system Refinement with Clock system

X

Y

C F T F T T T F

D T F T F F F T
w0 ⊥⊥⊥⊥ w1 ⊥⊥⊥⊥ ⊥ ⊥⊥⊥ ⊥ ⊥⊥⊥ w3

⊥⊥⊥⊥ v1 ⊥⊥⊥⊥ v2 v3 v4 ⊥⊥⊥⊥

SamplingS

X

Y

C F T F T T T F

D T F T F F F T
w0 v1 w1 v2 v3 v4 w3

⊥⊥⊥⊥ v1 ⊥⊥⊥⊥ v2 v3 v4 ⊥⊥⊥⊥ X

Y

C F T F T T T F

D T F T F F F T
w0 0 w1 0 0 0 w3

x v1 v1 v2 v3 v4 v4

F1 and F2 implement F
-multiplexing (F1)
-constant valuation (F2:Y)
-memorization (F2:X)

F

F2F1

December 1, 2000 Acotris 33

Designing with SignalDesigning with Signal
partial order definitionpartial order definition

● Needed: some behavioural aspects

X → Yh

Z := X default Y

● Definition of Z := X Z :=: X | X ^x Y

X

hX hY^- hX

Y

Z

December 1, 2000 Acotris 34

Designing with SignalDesigning with Signal
Graph propertiesGraph properties

● Sequence
X1 X2 X3h1 h2

X1 X3h1 when h2

● parallel

X1 X2

h1

h2

X1 X2h1 default h2

December 1, 2000 Acotris 35

Designing with SignalDesigning with Signal
Graph propertiesGraph properties

● Circuit detection
X1 X1h

● Process abstraction: on external signals
– Clock equation
– Graph abstraction

● Optimizations
– needed clock
– assignment clock
– modification clock

December 1, 2000 Acotris 36

PolychronyPolychrony

Some functionalitiesSome functionalities

December 1, 2000 Acotris 37

State transformationsState transformations
– Event/Boolean conversion
– Modifying interface for event signals
– Flattening expansion: hierarchy of clocks is

reduced to one level
– Boolean State variables: defined at the master

clock
– Cycle detection

December 1, 2000 Acotris 38

Graph normalizationGraph normalization

● Function:
– Unifying signal defined by the same expression
– Solving constraints

● Based on:
– Rewritting of Boolean signal expressions

December 1, 2000 Acotris 39

RETIMINGRETIMING
● Minimization of the state variables
● Solving constrainsts

•F

$X1

$X2

$Xn

Y
•F $

X1

X2

Xn

Y

UPSTREAM retiming
DOWNSTREAM retiming

December 1, 2000 Acotris 40

PARTITIONINGPARTITIONING

● User partitioning
● Input directed partitioning
● Output directed partitioning
● Control/Calculation partitioning
● State variable/other signals

partitioning

December 1, 2000 Acotris 41

USER PARTITIONING USER PARTITIONING

● Using PRAGMA: RunOn
● Method returns

– a set of subgraphs using the value of the
pragma

– Clocks are assigned to subgraphs
– The interface of each subgraph is built

Reorganization

December 1, 2000 Acotris 42

I/OI/O directeddirected PARTITIONINGPARTITIONING
● Definition:

– X,Y are in the same set iff they depend on the same
inputs

● A Program P is rewritten in
– (| (| P1 | P2 | ….|Pn |) | SCHEDULER() |)

● How?:
– a set of subgraphs is built, clocks are assigned to

subgraphs, interface of each subgraph is built
– The graph of the node calls is built: SCHEDULER

Reorganization

December 1, 2000 Acotris 43

CONTROL/CALCULATION CONTROL/CALCULATION
partitioningpartitioning

● A Program P is rewritten in
– (| Pcontrol() | Pcalculations() |)

● Pcontrol: contains clocks and boolean definitions
● Pcalculations: contains numerical definitions

● How?:
– Two subgraphs are built according on types of signals
– Clocks are assigned to subgraphs
– The interface of each subgraph is built
– The graph of the node calls is built

Reorganization

December 1, 2000 Acotris 44

STATES/OTHERS STATES/OTHERS PartitioningPartitioning
● A Program P is rewritten in

– (| P_states() | P_others() |)
● P_states: contains memorizations definitions
● P_others: contains others definitions

● How?:
– Two subgraphs are built according on the criterion
– Clocks are assigned to subgraphs
– The interface of each subgraph is built
– The graph of the node calls is built

Reorganization

December 1, 2000 Acotris 45

INTERFACE SYNTHESISINTERFACE SYNTHESIS

● IO dependences
– Transitive Closure reduced to I/O

X --> Y at Hi

● Clocks Projection
– I/O signal clocks
– I/O Dependence clocks

Abstraction

December 1, 2000 Acotris 46

OPTIMIZATIONSOPTIMIZATIONS

● Mutliplexing delayed variables
– (| ZX := X $ 1 | ZZX := ZX $ 1 |)

can be implemented using an array of 3 elements without
copy

● Multiplexing by signal aggregation
– x := y when c
– x and y can be implemented in one variable

Optimizations

December 1, 2000 Acotris 47

OPTIMIZATIONSOPTIMIZATIONS

● Using clock calculus

– Exclusive clocks
– Utility clock of signals
– Assignment clock of signals
– Modification clock of signals

Optimizations

December 1, 2000 Acotris 48

CODE GENERATIONCODE GENERATION

C
ode generation

GRAPH

C BLIF

DC*

SIGNAL

VHDLC++

December 1, 2000 Acotris 49

● Sigali and automata
– Translation automata CADP
– Studying correspondence

Sigali µ-calculus

Formal VerificationFormal Verification

December 1, 2000 Acotris 50

Sigali

SIGNAL: system
of constraints on clocks

and values

ALPHA: system
of affine recurrence

equations

C VHDL

Compiler

Netlist
C

VHDL

Compiler

Alpha0
AlpHard

Transformations
of programs

● Codesign regular/irregular

Interface Synthesis

M1 V11

December 1, 2000 Acotris 51

● Verification of duration constraints
– max-plus Algebra

● Temporal Interpretation
– P a program
– A a model of target architecture

● Set of generators

– we define TA(P) model of time consumption of P
on A

– Simulator P| TA(P)

December 1, 2000 Acotris 52

● Hardware synthesis
– Interpretation of absence as don’t care
– Clock synthesis
– Exploitation of exclusions (clock calculus)

Signal
compiler

C- Simulator

VHDL gen.

Sigali

Timing Eval.

Consumption

Synopsis
automaton
pre-proc.

Theoretical studies

December 1, 2000 Acotris 53

PerspectivesPerspectives

– à la GNU-licensed version of Polychrony
– Software architecture
– Static properties

● abstract interpretation (intervals in BDD)

– Validation
● validation of each transformation
● verification of the trace of their application

– Test generation
● using controller synthesis techniques

December 1, 2000 Acotris 54

ComplementsComplements

December 1, 2000 Acotris 55

INTERFACE SYNTHESIS INTERFACE SYNTHESIS
::exampleexample Abstraction

d becomes an output

{a,b,d}

[d] {e, c}

[c] {y}

December 1, 2000 Acotris 56

Signal flow modelSignal flow model
DeDe--synchronisedsynchronised functionsfunctions

Z :=: X ~+ Y
An asynchronous (triggered) version of
is defined as

Z :=: X + Y

X xx

Y yy +
ZAsynch/

Synch
interface

December 1, 2000 Acotris 57

Signal flow modelSignal flow model
an asynchronous/synchronous interfacean asynchronous/synchronous interface

X xx

Y yy +
ZAsynch/

Synch
interface

cell
cell

X

Y

xx
yy

xx ^= (^X) default (^Y)
| yy ^= (^X) default (^Y)

Triggering

December 1, 2000 Acotris 58

Synchronicity in a single taskSynchronicity in a single task

(x:= u
| y:= v)

u
d

x
y

Signal: x and y are independent

Lustre: x and y are always
synchronous

Statecharts: xt+1 and yt+1 are
simultaneous when this action
belongs to a fired transition

(x:= u
| y:= x + v)

u
d

x
y

Signal: x and y are synchronous

Lustre: x and y are always
synchronous

Statecharts: xt+1 and yt+1 are
simultaneous when this action
belongs to a fired transition

(but with a different value)

December 1, 2000 Acotris 59

Synchronicity in multiple taskSynchronicity in multiple task

(y:= v)

Signal: x and y are
independent

Lustre: x and y are
independent

Statecharts: x and y are
independent

(y:= x + v)

u
y

Signal: x and y are synchronous

Lustre: x and y are synchronous

Statecharts: xt+1 and yt+1 are simultaneous
when this action belongs to a fired distributed
transition (but with a different value)

(x:= u)
u x

yv

(x:= u)
x

v

December 1, 2000 Acotris 60

Relax Synchronicity Relax Synchronicity
when neededwhen needed

(y:= x + v)

u

y

Signal: x and y are no more synchronous but the flow
semantics is preserved

Lustre: cannot be described

StateChart: ?

(x:= u)
x

v

		2002-05-23T16:13:40+0100
	Viry Châtillon
	Michel Nakhle
	Le document est certifié.

