

APPROCHE D'ANALYSE ET DE CONCEPTION DES «SETR»

(SYSTEMES EMBARQUES TEMPS REEL)

1 PRINCIPALES CARACTERISTIQUES DES SETR

1.1 PROCESSUS

- Plus ou moins Complexes
- Réactifs...

1.2 ... AVEC DIFFERENTES VUES DU TEMPS...

- Les temps logiques ou «informatiques» de l'image du système
- Le temps physique du système «réel»

1.3 ... A GERER EN COHERENCE AFIN D'EVITER

- La dégradation des performances
- Les dysfonctionnements
- Les fonctionnements erronés

2 «PROCESS» DE CONCEPTION DES SETR

2.1 PROPRIETE FONDAMENTALE

- Offrir au concepteur un moyen
 - o De spécifier à haut niveau la structure des SETR
 - o De concevoir les Objets qui les composent
 - o Et d'établir une cohérence entre temps physique et temps logique

2.2 "PROCESS" CONTRAINT

2.2.1 Par le Contexte

- Evolution incessante des gammes et des produits
- Analyse et maîtrise des surcoûts induits par l'informatique
 - o Structurels
 - Humains (formation)
- Mutation des métiers

2.2.2 Par les Techniques

- Granularités différentes du parallélisme et des configurations :
 - Mono-calculateur et mono processeur
 - o Mono-calculateur et multi-processeurs
 - Multi-calculateurs interconnectés...
- Partage des ressources informatiques et/ou industrielles
- Problèmes de sécurité des personnes et des biens
- Temps réel embarqué (Minimisation des ressources)

3 OUTILS ET MÉTHODES

3.1 CYCLES DE DEVELOPPEMENT

- En V ou itératif :
 - En cas de non respect, conduit à des difficultés d'évolution et de maintenance
- En Spirale:
 - o Peu utilisé, car difficulté de prévision des coûts
- En Y, ou «Système en W»:
 - Autorise une organisation de type «agents multiples»
 - Permet d'alterner entre les points de vue global et local

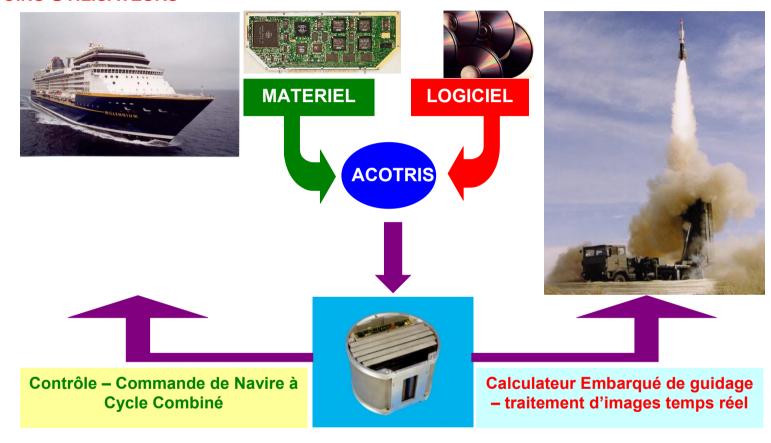
3.2 APPORTS DES METHODES DE SPECIFICATION

- Orientées Objets (Fonctionnelles / Structurelles)
 - o Respect de la Qualité et Bénéfice de la Productivité
- Orientées Données
 - o Bénéfice du Contrôle précoce
- Formelles
 - Bénéfice de la Vérification et Validation précoces

3.3 CONTRAINTES DE DEPLOIEMENT

- Us et Coutumes des Industriels
 - Méthodologie aboutissant à une démarche simple et claire (contraintes de formation et de culture «métier»)
- Facteurs économiques
 - Aspect «Atelier Génie Système (AGS)» :
 - \Leftrightarrow Diminution des développements «maison» (contrainte de diminution des coûts)
- Aspects concurrentiels
 - Normalisation :
 - \Leftrightarrow Matériels et logiciels de plus en plus soumis à des normes ou standards (contrainte d'échanges)
 - ← Certification

LE PROJET RNTL ACOTRIS



4 ACOTRIS

4.1 BESOINS UTILISATEURS

4.2 REPONSE AUX BESOINS EXPRIMES

Proposer un Guide Méthodologique et une Démarche «Systémique» (avec les outils supports) :

- Indépendants de tout cycle
- Adaptés aux approches utilisées par la majorité des industriels
- Intégrant des méthodes formelles de Vérification / Validation et de Co-développement
- Prenant en compte, par des moyens «simples»,
 - o Les besoins
 - Fonctionnels / Structurels

et

- Logico-temporels
- Les contraintes matérielles (Architecture),

Et permettant de rationaliser les phases de développement des SETR

4.3 OBJECTIFS

Aider à la Spécification complète du besoin, et à la Conception des applications TR en intégrant :

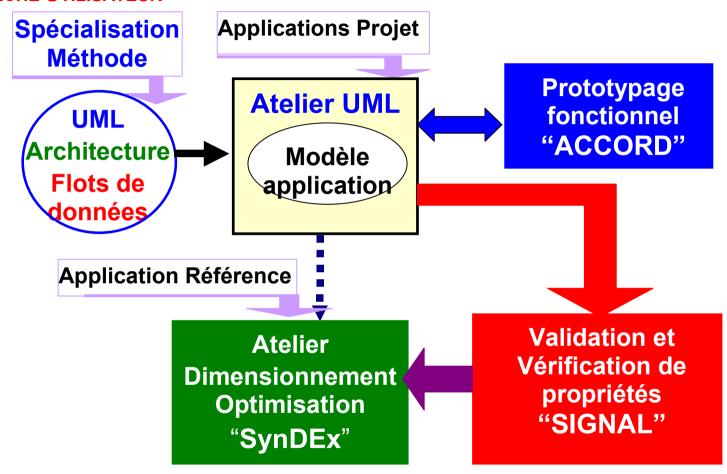
- Une méthodologie d'Analyse et de Conception basée sur un formalisme asynchrone standard (UML avec méthode ACCORD)
- Une Méthodologie de Conception et de Réalisation basée sur le modèle synchrone (SIGNAL et méthode AAA avec SynDEx)

Afin d'assister les concepteurs d'applications multitâches TR à fort parallélisme durant le processus de **co-développement** ("co-design") par une automatisation quasi complète de ce processus.

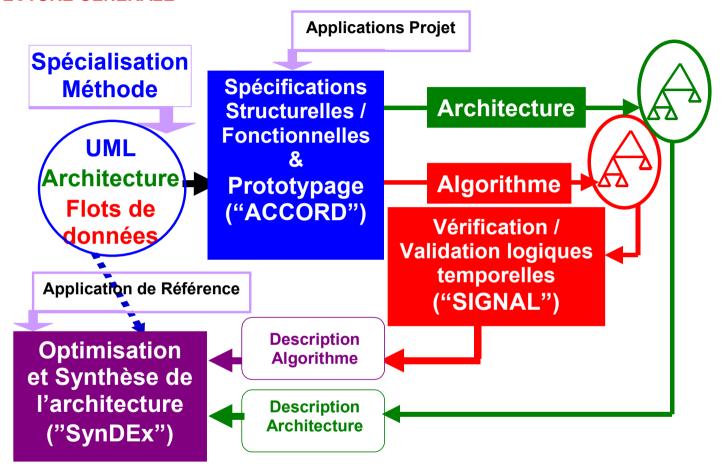
→ Adaptation et connexion des outils existants (production de passerelles).

Evaluer et valider les solutions techniques sur deux types d'applications :

- Calculateur parallèle embarqué (application pouvant être «de type régulier»)
- Contrôle-commande distribué (application pouvant être «de type irrégulier»).



4.4 DEMARCHE UTILISATEUR



4.5 ARCHITECTURE GENERALE

4.6 PLANNING

- A 6 mois :
 - Disposer d'une application de référence développée avec SynDEx indépendamment de la méthode de modélisation préconisée dans ACOTRIS
 - L'application de référence permettra également de valider les besoins en modélisation et en expressivité dans les modèles UML.
- A 18 mois
 - o Mise à disposition d'une première version de la méthode de modélisation
 - Mise à disposition d'une première version des passerelles autorisant un premier prototypage des deux applications projet.
- A 24 mois
 - Mise à disposition d'une seconde version des passerelles
 - o Fin de l'affinement de la méthode par exploitation complète sur les applications projet.
- A 30 mois
 - Fin de la validation des applications
 - o Fin de l'évaluation de l'approche.

5 CONSEQUENCES ATTENDUES

5.1 GLOBALES

- La maîtrise des risques et des coûts dans les réalisations de systèmes embarqués.
- La réduction des cycles de développement des Calculateurs embarqués de guidage traitement d'images et du Contrôle – Commande des systèmes modulaires intégrés

5.2 SCIENTIFIQUES

- Automatisation quasi complète du processus co-développement ("co-design"), de l'analyse/conception Orientée Objet à la phase de co-simulation. Les techniques de base du "co-design" seront démontrées et "transférées" vers l'industrie
- Intégration de formalismes déterministes dans des ateliers UML
- Contributions aux standards et à la diffusion technologique (support aux actions industrielles)
- Levier d'influence offert auprès des organismes de normalisation, tels l'OMG
- La mise dans le domaine public de la méthode "UML Temps Réel" issue du projet
- Réutilisation des passerelles développées dans d'autres projets (utilisation de formats d'échange de modèles standards, *par exemple XMI*)

6 LES PARTENAIRES

6.1 CS SI

- Rôle dans le projet :
 - o Pilote du projet
 - Développeur des passerelles et Support de la méthode
- Equipes : Pôles « Simulation Numérique et Technique » et « Systèmes Embarqués »
- Références :
 - o Développements numériques de codes scientifiques, Ingénierie du logiciel scientifique
 - o Développement d'applications TR critiques : système d'alarme de vol AIRBUS, logiciels embarqués multi-fonction gamme ATR, Communications sol-air, système de navigation...

6.2 CEA

- Rôle dans le projet :
 - Méthode de développement et prototypage UML; spécialisation de UML
- Equipes:
 - o LIST
- Références :
 - Approche multitâche déterministe pour les systèmes classés de sûreté (projet OASIS)
 - Développement UML par objets temps réel (projet ACCORD)
 - Analyse de modèles concurrents et génération automatique de tests (projet AGATHA)
 - o Conception de systèmes d'exploitation de machine massivement parallèles

6.3 INRIA

- Rôle dans le projet :
 - Support SynDEx, SIGNAL & méthode
 - o Liens UML/SIGNAL
- Equipe «UR de Rocquencourt (Projet Sosso)» Références et Recherches actuelles :
 - Méthodologie AAA + Logiciel de CAO SynDEx supportant AAA et Optimisation d'implantation de composants embarqués :
 - Modélisation fine des composants programmables (processeurs DSP, Généralistes) ou non (ASIC, FPGA...)
 - Optimisation d'implantations (Adéquation) distribuées TR embarquées
 - Génération automatique et complète du code pour les parties programmables ou non de l'architecture
- Equipe «UR de Rennes (Projet Ep-atr)» Références et Recherches actuelles :
 - Modèle flot de données + Environnement de recherche autour de SIGNAL. Conception d'applications enfouies :
 - Spécification et vérification de comportements, Conception et/ou modélisation formelle de langages
 - Liens entre modèles synchrones et asynchrones
 - Répartition des applications sur des architectures distribuées ou non.

6.4 EADS AEROSPATIALE MATRA MISSILES

- Rôle dans le projet :
 - Utilisateur/évaluateur de la Méthode ACOTRIS
 - Application de ACOTRIS à un calculateur parallèle embarqué de guidage traitement d'images.
 - Besoins :
 - o Réduire le cycle de développement des calculateurs de Traitement d'images temps réel
 - Anticiper la validation des architectures logicielle et matérielle (processeurs, mémoires, ASICs, FPGA, média de communications), avant le développement du calculateur embarqué
 - o Maîtriser la portabilité technologique pour suivre l'évolution rapide des procédés et des composants : pérennisation des acquis, traitement des obsolescences...
 - Améliorer la maîtrise des risques et des coûts.
- Equipes :
 - o Equipe Vision du Groupe Etudes Systèmes Missiles
- Références :
 - Développement de produits et d'applications pour la Vision embarquée.

6.5 SITIA

- Rôle dans le projet :
 - Utilisateur/évaluateur de la Méthode ACOTRIS
 - Application de ACOTRIS à un contrôle commande de navire à cycle combiné.
 - Projet R&D «Navire à cycle combiné» de "Alstom/Chantiers de l'Atlantique" :
 - o Générateurs et Turbine à vapeur munis de leurs régulations et automatismes
 - Générateurs d'électricité
 - o Turbines à gaz
 - o "Pods".
- Equipes :
 - o Groupe Marine
- Références :
 - o Développement de simulateurs : Marine (entraînement, validation, appareils propulsifs)
 - Aéronautique (optimisation de formage de tôles)
 - o Mines et carrières

