BDL

- a visual notation...
 - architectural aspects borrowed from statecharts detail notations borrowed from sequence diagrams
- ... having a mathematical specification semantics... compositional

allows for changes in the architecture

... and supporting correct-per-construction deployment

The BDL Workbench

Polychrony • Real time and embedded system design Aided, Automatic Transformations Specification Functional Design Formal, Timing, ... Architectural Design Verifications Formal Coding Prototype Simulation 3 IRISA

The core model Synchronized data flow

Polychrony

Some functionalities

State transformations

- Event/Boolean conversion
- Modifying interface for event signals
- Flattening expansion: hierarchy of clocks is reduced to one level
- Boolean State variables: defined at the master clock
- Cycle detection

Graph normalization

• Function:

- Unifying signal defined by the same expression
- Solving constraints
- Based on:
 - Rewritting of Boolean signal expressions

RETIMING

IRISA

- Minimization of the state variables
- Solving constrainsts UPSTREAM retiming DOWNSTREAM retiming

PARTITIONING

- User partitioning
- Input directed partitioning
- Output directed partitioning
- Control/Calculation partitioning
- State variable/other signals partitioning

USER PARTITIONING

- Using PRAGMA: RunOn
- Method returns
 - a set of subgraphs using the value of the pragma
 - -Clocks are assigned to subgraphs
 - The interface of each subgraph is built

I/O directed PARTITIONING Definition:

- X,Y are in the same set iff they depend on the same inputs
- A Program P is rewritten in
 - (| (| P1 | P2 ||Pn |) | SCHEDULER() |)
- How?:
 - a set of subgraphs is built, clocks are assigned to subgraphs, interface of each subgraph is built
 - The graph of the node calls is built: SCHEDULER

CONTROL/CALCULATION partitioning

- A Program P is rewritten in
 (| Pcontrol() | Pcalculations() |)
 - Pcontrol: contains clocks and boolean definitions
 - Pcalculations: contains numerical definitions
- How?:
 - Two subgraphs are built according on types of signals
 - Clocks are assigned to subgraphs
 - The interface of each subgraph is built
 - The graph of the node calls is built

STATES/OTHERS Partitioning

• A Program P is rewritten in

- (| P_states() | P_others() |)
 - P_states: contains memorizations definitions
 - P_others: contains others definitions

• How?:

- Two subgraphs are built according on the criterion
- Clocks are assigned to subgraphs
- The interface of each subgraph is built
- The graph of the node calls is built

INTERFACE SYNTHESIS

Abstraction

- IO dependences
 - Transitive Closure reduced to I/O
 - $X \rightarrow Y$ at Hi
- Clocks Projection
 - I/O signal clocks
 - I/O Dependence clocks

OPTIMIZATIONS

Optimizations

- Mutliplexing delayed variables
 - (|ZX := X \$ 1 | ZZX := ZX \$ 1 |)

can be implemented using an array of 3 elements without copy

- Multiplexing by signal aggregation
 - x := y when c
 - x and y can be implemented in one variable

OPTIMIZATIONS

• Using clock calculus

- Exclusive clocks
- Utility clock of signals
- Assignment clock of signals
- Modification clock of signals

Optimizations

Formal Verification

• Sigali and automata

- Translation automata CADP
- Studying correspondence
 Sigali µ-calculus

Temporal Interpretation

- P a program
- A a model of target architecture
 - Set of generators
- we define $T_A(P)$ model of time consumption of P on A
- Simulator P $|T_A(P)$
- Verification of duration constraints
 max-plus Algebra

- Hardware synthesis
 - Interpretation of absence as *don't care*
 - Clock synthesis
 - Exploitation of exclusions (clock calculus)

Perspectives

- à la GNU-licensed version of Polychrony
- -Software architecture
- Static properties
 - abstract interpretation (intervals in BDD)
- Validation
 - validation of each transformation
 - verification of the trace of their application
- Test generation
 - using controller synthesis techniques

